
MA20218: ANALYSIS 2A

Chapter 0: Review from MA10207 and some basic results

0.1. Sequences.

Definition 0.1 (Convergence of sequences). Let (αn)n∈N be a sequence of real numbers. We say that
(αn)n∈N converges to a limit L ∈ R, denoted L = limn→∞ αn, if for every ε > 0 there exists N ∈ N such
that

|αn − L| < ε ∀n ≥ N.
Equivalently, if

L− ε < αn < L+ ε ∀n ≥ N. (0.1)

We say that (αn)n∈N diverges to +∞ if for every M ∈ R there exists N ∈ N such that

αn > M ∀n ≥ N.
Similarly, we say that (αn)n∈N diverges to −∞ if for every M ∈ R there exists N ∈ N such that

αn < M ∀n ≥ N.

Proposition 0.2 (Cauchy criterion for convergence). The sequence (αn)n∈N converges if and only if for
each ε > 0, there exists N such that

|αm − αn| < ε ∀m,n ≥ N.

Remark 0.3. Recall that, for a non-empty set A ⊂ R, the infimum of A is denoted by inf A and is the
greatest lower bound for A. The infimum (which need not lie in A) is an element of R = R∪ {+∞,−∞}
which is less than or equal to any element in A and arbitrarily close to elements of A. Similarly, supA
(which need not lie in A) is the least upper bound for A and is an element of R which is greater than or
equal to any element in A and arbitrarily close to elements of A.

Although not every real sequence converges, we can always define the largest and smallest accumulation
points of a sequence:

Definition 0.4 (Limit superior and limit inferior). Let (αn)n∈N be a real sequence.
We define the limit superior of the sequence by

lim sup
n→∞

αn = lim
n→∞

(sup{αm : m ≥ n}) = inf
n∈N

(sup{αm : m ≥ n}) ,

We define the limit inferior of the sequence by

lim inf
n→∞

αn = lim
n→∞

(inf{αm : m ≥ n}) = sup
n∈N

(inf{αm : m ≥ n}) ,

Note that
lim inf
n→∞

αn ≤ lim sup
n→∞

αn.

If lim infn→∞ αn = lim supn→∞ αn = L, then the sequence converges and we have that L = limn→∞ αn.

Proposition 0.5 (Properties of lim sup and lim inf). Let (αn)n be a real sequence; let L1 = lim infn→∞ αn
and L2 := lim supn→∞ αn. Then

(1) For every ε > 0 there exists N ∈ N such that

αn > L1 − ε ∀n ≥ N,
namely only a finite number of elements is smaller than L1 − ε.

(2) For every ε > 0 there exist infinitely many n ∈ N such that

αn < L1 + ε.

Similarly
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(3) For every ε > 0 there exists N ∈ N such that

αn < L2 + ε ∀n ≥ N,

namely only a finite number of elements is larger than L2 + ε.
(4) For every ε > 0 there exist infinitely many n ∈ N such that

αn > L2 − ε.

Remark 0.6. It can be shown using the last proposition that

lim sup
n→∞

αn := sup

(
lim
k→∞

αnk
: (αnk

)k is a convergent subsequence

)

so that lim supn→∞ αn is the supremum of the subsequential limits of (αn) or, equivalently, the largest
cluster point of the sequence. Similarly,

lim inf
n→∞

αn := inf

(
lim
k→∞

αnk
: (αnk

)k is a convergent subsequence

)

so that lim infn→∞ αn is the infimum of the subsequential limits of (αn) or, equivalently, the smallest
cluster point of the sequence.

To compute limits of real sequences, it can be helpful to remember some basic results:

Proposition 0.7. The following limits hold:

• Given a ∈ R,

lim
n→+∞

an =


+∞ if a > 1,

1 if a = 1,

0 if − 1 < a < 1,

and it does not exist for a ≤ −1.
• For every a > 0 we have

lim
n→+∞

a
1
n = 1;

• For b ∈ R we have

lim
n→+∞

nb =


+∞ if b > 0,

1 if b = 0,

0 if b < 0.

• For every b ∈ R:

lim
n→+∞

(nb)
1
n = 1;

• For every b > 0 and a > 1 we have

lim
n→+∞

lnn = lim
n→+∞

nb = lim
n→+∞

an = lim
n→+∞

n! = lim
n→+∞

nn = +∞;

• For every b > 0 and a > 1 we have

lim
n→+∞

lnn

nb
= lim
n→+∞

nb

an
= lim
n→+∞

an

n!
= lim
n→+∞

n!

nn
= 0.
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0.2. Series.
We recall the main convergence criteria and some tests relating to convergence of series in R.

Definition 0.8 (Convergence of series). Let (αk) be a sequence of real numbers, then the series
∞∑
k=1

αk

is said to converge to the sum s ∈ R if and only if the sequence of partial sums (sn)n∈N defined by

sn =

n∑
k=1

αk

converges to s as n→∞.
The series

∑∞
k=1 αk is said to be absolutely convergent if

∑∞
k=1 |αk| is a convergent series. A series which

is convergent but not absolutely convergent is said to be conditionally convergent.

Proposition 0.9 (Cauchy criterion for convergence of a series.). The series
∑∞
k=1 αk converges if and

only if for each ε > 0 there exists N ∈ N such that∣∣∣∣∣
N+p∑
k=N

αk

∣∣∣∣∣ < ε ∀p ∈ N.

Corollary 0.10. If the series
∑∞
k=1 αk is absolutely convergent, then it is convergent.

Theorem 0.11 (Vanishing test). Let (αk) be a sequence of real numbers. If the series
∞∑
k=1

αk

converges (to a finite limit), then
lim
k→∞

αk = 0.

Theorem 0.12 (Comparison test). Suppose that
∑∞
k=1 αk and

∑∞
k=1 βk are two series satisfying

0 ≤ αk ≤ βk ∀k ∈ N.
If
∑∞
k=1 βk converges , then

∑∞
k=1 αk converges.

Theorem 0.13 (Ratio test). Let (αk) be a sequence of real numbers such that αk is nonzero for k
sufficiently large and let

L1 = lim inf
k→∞

∣∣∣∣αk+1

αk

∣∣∣∣ , and L2 = lim sup
k→∞

∣∣∣∣αk+1

αk

∣∣∣∣ .
Then the series

∞∑
k=1

αk

converges absolutely (to a finite limit) if 0 ≤ L2 < 1 and diverges or does not converge if 1 < L1 ≤ +∞.

We now state another convergence criterion, the ratio test, which is formulated in terms of the limsup.

Theorem 0.14 (Root test). Let (αk) be a sequence of real numbers, and let

γ = lim sup
k→∞

|αk|
1
k .

Then the series
∞∑
k=1

αk

converges absolutely (to a finite limit) if 0 ≤ γ < 1 and diverges or does not converge if 1 < γ ≤ +∞.
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Theorem 0.15 (The integral test). Suppose that f : [1,∞) → R is a positive decreasing continuous
function satisfying limx→∞ f(x) = 0. Then the series

∑∞
k=1 f(k) converges if and only if the sequence

(βn)n∈N of integrals

βn =

∫ n

1

f(x) dx n ∈ N
converges as n→∞.

Theorem 0.16 (Leibnitz or alternating series test). Suppose that (αn) is a monotonically decreasing
sequence of non-negative terms converging to zero. (i.e., α1 ≥ α2... ≥ αn ≥ α(n+1) ≥ ... ≥ 0 and αk → 0
as k →∞.) Then the series

∞∑
k=1

(−1)kαk

converges.

Remark 0.17. The last result provides a method of generating conditionally convergent series.

0.3. Continuity and integrability.

Definition 0.18 (Continuous function). Let A ⊂ R be a set and f : A → R a function. Suppose that
x ∈ A. We say that f is continuous at x if

∀ ε ∃ δ > 0 such that ∀ y ∈ A : |y − x| < δ ⇒ |f(y)− f(x)| < ε.

Equivalently, in terms of sequences, we have that f is continuous at x if for any sequence (xk)k∈N in A
with x = limk→∞ xk, we have

f(x) = lim
k→∞

f(xk).

We say that f is continuous on A if it is continuous at every point of A.
We say that f is uniformly continuous on A if

∀ ε ∃ δ > 0 such that ∀x, y ∈ A : |y − x| < δ ⇒ |f(y)− f(x)| < ε.

Finally, we say that f is Lipschitz continuous if there exists a number L > 0 such that for all x, y ∈ A,

|f(y)− f(x)| ≤ L|y − x|.

These definitions may have been given in MA10207 only for functions defined on an interval. The
conditions are exactly the same, however, for any set A ⊂ R. If A is a closed, bounded interval, then
continuity has particularly nice consequences.

Theorem 0.19 (Theorem of uniform continuity). Let I ⊂ R be a closed, bounded interval and suppose
that f : I → R is continuous. Then f is uniformly continuous on I.

Theorem 0.20 (Weierstrass extreme value theorem). Let I ⊂ R be a closed, bounded interval and
suppose that f : I → R is continuous. Then f is bounded and attains its infimum and supremum.

The notation we will use for Riemann integration (which may differ slightly from what you have seen
last year) is the following.

Definition 0.21. A function f : [a, b] → R is said to be Riemann integrable on [a, b] if for every ε > 0
there exists a subdivision ∆ of [a, b], ∆ = {a = x0 < x1 < · · · < xM = b} such that

U(f,∆)− L(f,∆) =

M∑
n=1

(
sup
In

f − inf
In
f

)
|In| < ε, In = xn+1 − xn. (0.2)

We also denote with ω(f, In) := supIn f − infIn f the oscillation of f on In; in this case (0.2) can be
rewritten as

U(f,∆)− L(f,∆) =

M∑
n=1

ω(f, In) |In| < ε.


