MA20218: ANALYSIS 2A

CHAPTER 0: REVIEW FROM MA10207 AND SOME BASIC RESULTS

0.1. Sequences.

Definition 0.1 (Convergence of sequences). Let $(\alpha_n)_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that $(\alpha_n)_{n \in \mathbb{N}}$ converges to a limit $L \in \mathbb{R}$, denoted $L = \lim_{n \to \infty} \alpha_n$, if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

 $|\alpha_n - L| < \varepsilon \quad \forall \, n \ge N.$

 $L - \varepsilon < \alpha_n < L + \varepsilon \quad \forall \, n \ge N.$

(0.1)

We say that $(\alpha_n)_{n \in \mathbb{N}}$ diverges to $+\infty$ if for every $M \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that

$$\alpha_n > M \quad \forall n \ge N.$$

Similarly, we say that $(\alpha_n)_{n\in\mathbb{N}}$ diverges to $-\infty$ if for every $M\in\mathbb{R}$ there exists $N\in\mathbb{N}$ such that

 $\alpha_n < M \quad \forall \, n \ge N.$

Proposition 0.2 (Cauchy criterion for convergence). The sequence $(\alpha_n)_{n \in \mathbb{N}}$ converges if and only if for each $\epsilon > 0$, there exists N such that

$$|\alpha_m - \alpha_n| < \epsilon \quad \forall m, n \ge N.$$

Remark 0.3. Recall that, for a non-empty set $A \subset \mathbb{R}$, the infimum of A is denoted by $\inf A$ and is the greatest lower bound for A. The infimum (which need not lie in A) is an element of $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$ which is less than or equal to any element in A and arbitrarily close to elements of A. Similarly, $\sup A$ (which need not lie in A) is the least upper bound for A and is an element of $\overline{\mathbb{R}}$ which is greater than or equal to any element in A and elements of A.

Although not every real sequence converges, we can always define the largest and smallest accumulation points of a sequence:

Definition 0.4 (Limit superior and limit inferior). Let $(\alpha_n)_{n \in \mathbb{N}}$ be a real sequence.

We define the limit superior of the sequence by

$$\limsup_{n \to \infty} \alpha_n = \lim_{n \to \infty} \left(\sup\{\alpha_m : m \ge n\} \right) = \inf_{n \in \mathbb{N}} \left(\sup\{\alpha_m : m \ge n\} \right)$$

We define the limit inferior of the sequence by

$$\liminf_{n \to \infty} \alpha_n = \lim_{n \to \infty} \left(\inf\{\alpha_m : m \ge n\} \right) = \sup_{n \in \mathbb{N}} \left(\inf\{\alpha_m : m \ge n\} \right),$$

Note that

$$\liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n.$$

If $\liminf_{n\to\infty} \alpha_n = \limsup_{n\to\infty} \alpha_n = L$, then the sequence converges and we have that $L = \lim_{n\to\infty} \alpha_n$.

Proposition 0.5 (Properties of lim sup and lim inf). Let $(\alpha_n)_n$ be a real sequence; let $L_1 = \liminf_{n \to \infty} \alpha_n$ and $L_2 := \limsup_{n \to \infty} \alpha_n$. Then

(1) For every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$\alpha_n > L_1 - \varepsilon \quad \forall \, n \ge N,$$

namely only a finite number of elements is smaller than $L_1 - \varepsilon$.

(2) For every $\varepsilon > 0$ there exist infinitely many $n \in \mathbb{N}$ such that

$$\alpha_n < L_1 + \varepsilon.$$

Similarly

(3) For every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$\alpha_n < L_2 + \varepsilon \quad \forall \, n \ge N_2$$

namely only a finite number of elements is larger than $L_2 + \varepsilon$.

(4) For every $\varepsilon > 0$ there exist infinitely many $n \in \mathbb{N}$ such that

/

$$\alpha_n > L_2 - \varepsilon$$

Remark 0.6. It can be shown using the last proposition that

$$\limsup_{n \to \infty} \alpha_n := \sup \left(\lim_{k \to \infty} \alpha_{n_k} : (\alpha_{n_k})_k \text{ is a convergent subsequence} \right)$$

so that $\limsup_{n\to\infty} \alpha_n$ is the supremum of the subsequential limits of (α_n) or, equivalently, the largest cluster point of the sequence. Similarly,

$$\liminf_{n \to \infty} \alpha_n := \inf \left(\lim_{k \to \infty} \alpha_{n_k} : (\alpha_{n_k})_k \text{ is a convergent subsequence} \right)$$

so that $\liminf_{n\to\infty} \alpha_n$ is the infimum of the subsequential limits of (α_n) or, equivalently, the smallest cluster point of the sequence.

To compute limits of real sequences, it can be helpful to remember some basic results:

Proposition 0.7. The following limits hold:

• Given $a \in \mathbb{R}$,

$$\lim_{n \to +\infty} a^n = \begin{cases} +\infty & \text{if } a > 1, \\ 1 & \text{if } a = 1, \\ 0 & \text{if } -1 < a < 1, \end{cases}$$

and it does not exist for $a \leq -1$.

• For every a > 0 we have

$$\lim_{n \to +\infty} a^{\frac{1}{n}} = 1;$$

• For $b \in \mathbb{R}$ we have

$$\lim_{n \to +\infty} n^{b} = \begin{cases} +\infty & \text{if } b > 0, \\ 1 & \text{if } b = 0, \\ 0 & \text{if } b < 0. \end{cases}$$

• For every $b \in \mathbb{R}$:

$$\lim_{n \to +\infty} (n^b)^{\frac{1}{n}} = 1;$$

• For every b > 0 and a > 1 we have

$$\lim_{n \to +\infty} \ln n = \lim_{n \to +\infty} n^b = \lim_{n \to +\infty} a^n = \lim_{n \to +\infty} n! = \lim_{n \to +\infty} n^n = +\infty;$$

• For every b > 0 and a > 1 we have

$$\lim_{n \to +\infty} \frac{\ln n}{n^b} = \lim_{n \to +\infty} \frac{n^b}{a^n} = \lim_{n \to +\infty} \frac{a^n}{n!} = \lim_{n \to +\infty} \frac{n!}{n^n} = 0.$$

0.2. **Series.**

We recall the main convergence criteria and some tests relating to convergence of series in \mathbb{R} .

Definition 0.8 (Convergence of series). Let (α_k) be a sequence of real numbers, then the series

$$\sum_{k=1}^{\infty} \alpha_k$$

is said to converge to the sum $s \in \mathbb{R}$ if and only if the sequence of partial sums $(s_n)_{n \in \mathbb{N}}$ defined by

$$s_n = \sum_{k=1}^n \alpha_k$$

converges to s as $n \to \infty$.

The series $\sum_{k=1}^{\infty} \alpha_k$ is said to be absolutely convergent if $\sum_{k=1}^{\infty} |\alpha_k|$ is a convergent series. A series which is convergent but not absolutely convergent is said to be conditionally convergent.

Proposition 0.9 (Cauchy criterion for convergence of a series.). The series $\sum_{k=1}^{\infty} \alpha_k$ converges if and only if for each $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$\left|\sum_{k=N}^{N+p} \alpha_k\right| < \epsilon \quad \forall p \in \mathbb{N}.$$

Corollary 0.10. If the series $\sum_{k=1}^{\infty} \alpha_k$ is absolutely convergent, then it is convergent.

Theorem 0.11 (Vanishing test). Let (α_k) be a sequence of real numbers. If the series

$$\sum_{k=1}^{\infty} \alpha_k$$

converges (to a finite limit), then

$$\lim_{k \to \infty} \alpha_k = 0$$

Theorem 0.12 (Comparison test). Suppose that $\sum_{k=1}^{\infty} \alpha_k$ and $\sum_{k=1}^{\infty} \beta_k$ are two series satisfying $0 \le \alpha_k \le \beta_k \ \forall k \in \mathbb{N}.$

If $\sum_{k=1}^{\infty} \beta_k$ converges, then $\sum_{k=1}^{\infty} \alpha_k$ converges.

Theorem 0.13 (Ratio test). Let (α_k) be a sequence of real numbers such that α_k is nonzero for k sufficiently large and let

$$L_1 = \liminf_{k \to \infty} \left| \frac{\alpha_{k+1}}{\alpha_k} \right|, \quad and \quad L_2 = \limsup_{k \to \infty} \left| \frac{\alpha_{k+1}}{\alpha_k} \right|$$

Then the series

$$\sum_{k=1}^{\infty} \alpha_k$$

converges absolutely (to a finite limit) if $0 \le L_2 < 1$ and diverges or does not converge if $1 < L_1 \le +\infty$.

We now state another convergence criterion, the ratio test, which is formulated in terms of the limsup.

Theorem 0.14 (Root test). Let (α_k) be a sequence of real numbers, and let

$$\gamma = \limsup_{k \to \infty} |\alpha_k|^{\frac{1}{k}} \,.$$

Then the series

$$\sum_{k=1}^{\infty} \alpha_k$$

converges absolutely (to a finite limit) if $0 \le \gamma < 1$ and diverges or does not converge if $1 < \gamma \le +\infty$.

Theorem 0.15 (The integral test). Suppose that $f : [1, \infty) \to \mathbb{R}$ is a positive decreasing continuous function satisfying $\lim_{x\to\infty} f(x) = 0$. Then the series $\sum_{k=1}^{\infty} f(k)$ converges if and only if the sequence $(\beta_n)_{n\in\mathbb{N}}$ of integrals

$$\beta_n = \int_1^n f(x) \, dx \quad n \in \mathbb{N}$$

converges as $n \to \infty$.

Theorem 0.16 (Leibnitz or alternating series test). Suppose that (α_n) is a monotonically decreasing sequence of non-negative terms converging to zero. (i.e., $\alpha_1 \ge \alpha_2 \dots \ge \alpha_n \ge \alpha_{(n+1)} \ge \dots \ge 0$ and $\alpha_k \to 0$ as $k \to \infty$.) Then the series

$$\sum_{k=1}^{\infty} (-1)^k \alpha_k$$

converges.

Remark 0.17. The last result provides a method of generating conditionally convergent series.

0.3. Continuity and integrability.

Definition 0.18 (Continuous function). Let $A \subset \mathbb{R}$ be a set and $f : A \to \mathbb{R}$ a function. Suppose that $x \in A$. We say that f is continuous at x if

$$\forall \varepsilon \exists \delta > 0 \quad such that \ \forall y \in A : |y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon.$$

Equivalently, in terms of sequences, we have that f is continuous at x if for any sequence $(x_k)_{k\in\mathbb{N}}$ in A with $x = \lim_{k\to\infty} x_k$, we have

$$f(x) = \lim_{k \to \infty} f(x_k).$$

We say that f is continuous on A if it is continuous at every point of A.

We say that f is uniformly continuous on A if

 $\forall \varepsilon \exists \delta > 0 \quad such that \ \forall x, y \in A : |y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon.$

Finally, we say that f is Lipschitz continuous if there exists a number L > 0 such that for all $x, y \in A$,

$$|f(y) - f(x)| \le L|y - x|.$$

These definitions may have been given in MA10207 only for functions defined on an interval. The conditions are exactly the same, however, for any set $A \subset \mathbb{R}$. If A is a closed, bounded interval, then continuity has particularly nice consequences.

Theorem 0.19 (Theorem of uniform continuity). Let $I \subset \mathbb{R}$ be a closed, bounded interval and suppose that $f: I \to \mathbb{R}$ is continuous. Then f is uniformly continuous on I.

Theorem 0.20 (Weierstrass extreme value theorem). Let $I \subset \mathbb{R}$ be a closed, bounded interval and suppose that $f: I \to \mathbb{R}$ is continuous. Then f is bounded and attains its infimum and supremum.

The notation we will use for Riemann integration (which may differ slightly from what you have seen last year) is the following.

Definition 0.21. A function $f : [a, b] \to \mathbb{R}$ is said to be Riemann integrable on [a, b] if for every $\varepsilon > 0$ there exists a subdivision Δ of [a, b], $\Delta = \{a = x_0 < x_1 < \cdots < x_M = b\}$ such that

$$U(f,\Delta) - L(f,\Delta) = \sum_{n=1}^{M} \left(\sup_{I_n} f - \inf_{I_n} f \right) |I_n| < \varepsilon, \quad I_n = x_{n+1} - x_n.$$
(0.2)

We also denote with $\omega(f, I_n) := \sup_{I_n} f - \inf_{I_n} f$ the oscillation of f on I_n ; in this case (0.2) can be rewritten as

$$U(f,\Delta) - L(f,\Delta) = \sum_{n=1}^{M} \omega(f,I_n) |I_n| < \varepsilon.$$